
Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences
© 2022, released under CC BY-SA

CS 4530 Software Engineering
Module 10: Distributed Systems Architectures

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Recognize common software architectures
• Understand tradeoffs of scalability, performance, and fault tolerance

between these architectures
• Describe what makes web services RESTful, and implement a REST

API

Distributed Software Architectures

• Goal: abstract details away into reusable components

• Enables exploration of design alternatives

• Allows for analysis of high-level design before implementation

• Match system requirements to quality attributes of common architectural
patterns

Review: Distributed Systems Must Compromise
Constraints: number of nodes, network links

DC

NY

LONDON

SFEven if cross-city links are fast and cheap (are they?)
Still that pesky speed of light…

Replicated Systems Must Compromise
Consistency or availability?

A B A B

Consistent:
Maintain that “single server” behavior - all clients see
the same values regardless of failures
At least one server can’t safely respond in case of
failure

Available:
Different servers might diverge
Ignores network failures, as long as client can reach
server, still offer a response

The Monolith Architecture Relies on a Single Server

• Simplest answer to consistency problem: have only one server, one source of
truth

• Still “distributed” in that we have many clients

• Sacrifices:

• Scalability

• Performance

• Fault tolerance

Server

Client Client Client Client Client

NFS is the Network File System

• In a UNIX (POSIX-compliant) operating system,
files are stored in a tree from “/”

• “Mount” multiple filesystems to access them
locally

• Filesystems could be directly attached to this
computer, or shared by a remote server

• NFS is a distributed file system: multiple clients
can read/write the same files

• Created in 1984, still widely used

/

Users

jon

Volumes

Internal HD

Remote Server (NFS)

neuHome

…

External HD

externalHD

…

NFS is a Monolithic Shared Filesystem

• All files are stored on a single server

• To list files in a directory, clients make request to server

• To read or write files, clients make request to server

• Clients might “lock” files to prevent concurrent updates

• Assuming that scale, throughput, fault tolerance requirements are relatively
low, this is an acceptable architecture

• This architecture is the easiest to build fast and correctly

Monolithic Architectures Struggle to Scale
Challenges with NFS

• Scalability - How to go from 10 to 100 to 1,000
clients?

• Performance - How to access 100’s of GB of
data concurrently?

• Fault tolerance - What if server crashes?

Server

Client Client Client Client Client

Replication Alone is Not The Answer

• Constraints:

• Latency: Speed of light (~1ns/ft)

• Throughput: Long-distance links between servers are relatively low
throughput (10’s of Gbps, compare to 100’s of Gbps within a single server)

• Tradeoffs for replication, particularly over long distances:

• Replication will add latency, not reduce it

• Usually not enough bandwidth to maintain replication of all data across all
nodes

Tiered Architectures Partition Responsibility

• Key idea: Partition the system into
distinct tiers based on responsibilities

• Each tier scales independently of the
others - .com need not know about .org

• Satisfying a single request may require
multiple tiers

• DNS is a tiered architecture

• Example: scale .com differently from
.gov

Design Tiers Considering the Structure of Data
Example: GFS (Google File System, c 2010)
• Stated requirements: “High sustained bandwidth is more important than

low latency. Most of our target applications place a premium on processing
data in bulk at a high rate, while few have stringent response time
requirements for an individual read or write.”

Server

Client Client Client Client Client

Key problem: throughput of single
server is limited

GFS Tiers Filesystem Metadata and File Chunks
Example: GFS (Google File System, c 2010)
• Stated requirements: “High sustained bandwidth is more important than

low latency. Most of our target applications place a premium on processing
data in bulk at a high rate, while few have stringent response time
requirements for an individual read or write.”

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

GFS
Metadata

GFS Client

Where is file /foo/bar?

List of chunks and their locations

Reads chunks from the specific
ChunkServers known to have them

GFS Client
GFS Client

GFS Client
GFS Client

GFS Client
GFS Client

Metadata tier stores where files are
stored, in 128MB chunks

Chunk tier stores each 128MB chunk,
no need for coordination between

ChunkServers not storing same chunk

Pipeline Architectures

• The pieces correspond to stages in the
transformation of data in the system

• Good for complex straight-line processes where
multiple stages applied to different data,
concurrently

• Each stage in the pipeline takes an input, produces
an output: otherwise stateless

• Example: Map/Reduce splits data, filters it through
stages, then combines

• Pipeline architecture allows flexibility in mapping
stages to physical servers

Combine

Result

Stage 3 Stage 3 Stage 3 Stage 3 Stage 3

Stage 2 Stage 2 Stage 2 Stage 2 Stage 2

Stage 1 Stage 1 Stage 1 Stage 1 Stage 1

Partition

Big Data (lots of work)

Pipeline Architectures

• Scalability/Performance:

• Add more machines to process more data in
parallel

• Limited by bandwidth to transfer
inputs/outputs between stages

• Fault tolerance: Each stage in pipeline is
stateless. If one fails, it can be repeated
elsewhere.

Combine

Result

Stage 3 Stage 3 Stage 3 Stage 3 Stage 3

Stage 2 Stage 2 Stage 2 Stage 2 Stage 2

Stage 1 Stage 1 Stage 1 Stage 1 Stage 1

Partition

Big Data (lots of work)

Event-Driven Architectures

• Metaphor: a bunch of bureaucrats shuffling papers

• Components correspond to stages in the flow of data
through the system (not necessarily a straight-line flow)

• Very useful for composing other services (bureaucrats)

• Each processing unit has an in-box and one or more out-
boxes

• Each unit takes a task from its inbox, processes it, and puts
the results in one or more outboxes.

• Stages are typically connected by asynchronous message
queues.

Client

Event Driven Architecture: Reliable Real-Time Chat

• Requirements: “Must support real-time text chat for 2,000 users exchanging messages. Must
have best-effort delivery in real-time, and guarantee that all messages acknowledged are
preserved.”

• Challenge: Real-time “best-effort” delivery has conflicting requirements (low latency at
expense of fault tolerance) with guaranteeing all messages are eventually delivered (fault
tolerance at expense of latency)

Real Time
Chat Service Client

Client

Client
Sends message Delivers instantly to

2,000 clients

Event Driven Architecture: Reliable Real-Time Chat

• Requirements: “Must support real-time text chat for 2,000 users exchanging messages.
Must have best-effort delivery in real-time, and guarantee that all messages
acknowledged are preserved.”

• Responsibilities/processing units:

• “Real time” component optimizes for speed and availability sacrificing fault-tolerance

• “Persistence” component optimizes for fault-tolerance, sacrificing speed and
availability

• Event queue service receives events, dispatches to both processing units and is fault
tolerant

Event Driven Architecture: Reliable Real-Time Chat

• “Real time” component optimizes for speed and availability sacrificing fault-tolerance

• “Persistence” component optimizes for fault-tolerance, sacrificing speed and availability

• Reliable message queue buffers new chat messages

Client
Real Time Chat Service

Client

Client

Client
Sends message Delivers instantly to

2,000 clientsReliable message
queue (e.g.
RabbitMQ)

Fast, not-fault-
tolerant real-time

service (e.g. Redis)

Reliable database
(e.g. PostgreSQL)

Event-Driven Architecture Tradeoffs

• Scalability:

• Scale each processing unit separately

• Add more processing units at a marginal cost

• Performance:

• Message queue usually very high-throughput, relies on event processors to pick up
and process messages or queue can overflow

• Fault tolerance:

• Message queue can implement a buffer to ensure fault tolerance

Microservice Architectures

• Organize implementation around components (responsibilities)

• Each component is implemented independently

• Each component is

• independently replaceable,

• independently updatable

• Components can be built as libraries, but more usually as web services

• Services communicate via well-defined protocol like REST

Microservices: Schematic Example

Productivity
App

Frontend

“Dumb”
App Server

Mod 1
REST
service

Database

Mod 2
REST
service

Database

Mod 3
REST
service

Database

Mod 4
REST
service

Database

Mod 5
REST service

Database

Mod 6
REST
service

Database

REST

Todos
NodeJS, MongoDB

Mailer
Java, MySQL

Logins
Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Social Crawler

Python, MongoDB

Different languages,
different operating
systems

• Advantages
• services may scale differently, so can be implemented on hardware

appropriate for each (how much cpu, memory, disk, etc?). Ditto for software
(OS, implementation language, etc.)

• services are independent (yay for interfaces!) so can be developed and
deployed independently

• Disadvantages
• service discovery?
• should services have some organization, or are they all equals?
• overall system complexity

Microservice Advantages and Disadvantages

• Microservices at Netflix:
• 100s of microservices
• 1000s of daily production changes
• 10,000s of instances
• BUT:
• only 10s of operations engineers

Microservices are (a) highly scalable and (b) trendy

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-
every-time-you-hit-play-3a40c9be254b

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b

Microservices vs Monoliths
Martin Fowler’s Microservices Guide - https://martinfowler.com/microservices/

higher is better

https://martinfowler.com/microservices/

How Do Components/Services Communicate?

• Ideally, a magic abstraction: remote
procedure call (RPC) should make the
separation transparent

• There are many variations of RPC

• CORBA, RMI, SOAP, and more

• The most common form of RPC today
is called REST

Caller Machine Callee Machine

User Code User Code

local
call

local
call

local
return

work

local
return

• Defined by Roy Fielding in his 2000 Ph.D. dissertation

• “Throughout the HTTP standardization process, I was called on to defend the
design choices of the Web. That is an extremely difficult thing to do... I had
comments from well over 500 developers, many of whom were distinguished
engineers with decades of experience. That process honed my model down to
a core set of principles, properties, and constraints that are now called REST.”

• Not just a transport protocol, not a protocol definition language: a design
philosophy

• Interfaces that follow REST principles are called RESTful

REST: Representational State Transfer

• Single Server - As far as the client knows, there’s just one

• Stateless - Each request contains enough information that
a different server could process it (if there were
multiple…)

• Uniform Cacheability - Each request is identified as
cacheable or not.

• Uniform Interface - Standard way to specify interface

REST Principles

External
Cache

Web
Servers

App
Servers

Database
servers

Internal
Cache

Misc
Services

Clients

Client sees none
of this!

• For example, POST is typically not cacheable

“Not cacheable” means that it must be executed
exactly once per user request.

Uniform Interface:
Nouns are represented as URIs

• In a RESTful system, the server is visualized as a store of resources (nouns),
each of which has some data associated with it.

• URIs represent these resources

• Examples:

• /cities/losangeles

• /transcripts/00345/graduate (student 00345 has several transcripts in the
system; this is the graduate one)

• Anti-examples:

• /getCity/losangeles

• /getCitybyID/50654

• /Cities.php?id=50654

Useful heuristic: if you
were keeping this data in
a bunch of files, what
would the directory
structure look like?
But you don't have to
actually keep the data in
that way.

We prefer plural nouns for
toplevel resources, as you
see here.

• In REST, there are four things you can do with a resource

• POST: requests the server to create a resource
• there are several ways in which the value for the new resource can be

transmitted (more In a minute)

• GET: requests the server to respond with a representation of the resource

• PUT: requests the server to replace the value of the resource by the given
value

• DELETE: requests the server to delete the resource

Uniform Interface:
Verbs are represented as http methods

There are at least 3 ways to associate parameters with a request:
• path parameters. These specify portions of the path to the resource. For example, your REST protocol

might allow a path like

/transcripts/00345/graduate

• query parameters. These are part of the URI and are typically used as search items. For example,
your REST protocol might allow a path like

/transcripts/graduate?lastname=covey&firstname=avery

• body parameters. You can put additional parameters or information in the body, using any coding that
you like.

You say you want parameters?

• Resource: /todos
• GET /todos - get list all of my todo items
• POST /todos - create a new todo item (data in body)

• Resource: /todos/:todoItemID
• :todoItemID is a path parameter
• GET /todos/:todoItemID - fetch a single item by id
• PUT /todos/:todoItemID - update a single item (new data in body)
• DELETE /todos/:todoItemID - delete a single item

Example interface #1: a todo-list manager

Example Interface #2: a database of transcripts
POST /transcripts
-- adds a new student to the database,
-- returns an ID for this student.
-- requires a body parameter 'name', url-encoded (eg name=avery)
-- Multiple students may have the same name.

GET /transcripts/:ID
-- returns transcript for student with given ID. Fails if no such student

DELETE /transcripts/:ID
-- deletes transcript for student with the given ID, fails if no such student

POST /transcripts/:studentID/:courseNumber
-- adds an entry in this student's transcript with given name and course.
-- Requires a body parameter 'grade', url-encoded
-- Fails if there is already an entry for this course in the student's transcript

GET /transcripts/:studentID/:courseNumber
-- returns the student's grade in the specified course.
-- Fails if student or course is missing.

GET /studentids?name=string
-- returns list of IDs for student with the given name

Remember the heuristic:
if you were keeping this
data in a bunch of files,
what would the directory
structure look like?

Didn't seem to fit
the model, sorry

Specify REST APIs using OpenAPI

• The specification of the transcript API on the last
slide is RESTful, but is not machine-readable

• A machine-readable specification is useful for:

• Automatically generating client and server
boilerplate, documentation, examples

• Tracking how an API evolves over time

• Ensuring that there are no misunderstandings

/towns/{townID}/viewingArea:
post:

operationId: CreateViewingArea
responses:

'204':
description: No content
'400':
description: Invalid values specified
content:

application/json:
schema:

$ref: '#/components/schemas/InvalidParametersError'
description: Creates a viewing area in a given town
tags:

- towns
security: []
parameters:

- description: ID of the town in which to create the new viewing area
in: path
name: townID
required: true
schema:

type: string
- description: |-
session token of the player making the request, must

match the session token returned when the player joined the town
in: header
name: X-Session-Token
required: true
schema:

type: string
requestBody:

description: The new viewing area to create
required: true
content:

application/json:
schema:

$ref: '#/components/schemas/ViewingArea'
description: The new viewing area to create

TSOA Auto-Generates OpenAPI Specifications from TypeScript
@Route('towns')
export class TownsController extends Controller {

/**
* Creates a viewing area in a given town
*
* @param townID ID of the town in which to create the new viewing area
* @param sessionToken session token of the player making the request, must
* match the session token returned when the player joined the town
* @param requestBody The new viewing area to create
*
* @throws InvalidParametersError if the session token is not valid, or if the
* viewing area could not be created
*/
@Post('{townID}/viewingArea')
@Response<InvalidParametersError>(400, 'Invalid values specified')
public async createViewingArea(

@Path() townID: string,
@Header('X-Session-Token') sessionToken: string,
@Body() requestBody: ViewingArea,

)

Open API
Specification

TSOA Auto-Generates OpenAPI Specifications from TypeScript
@Route('towns')
export class TownsController extends Controller {

/**
* Creates a viewing area in a given town
*
* @param townID ID of the town in which to create the new viewing area
* @param sessionToken session token of the player making the request, must
* match the session token returned when the player joined the town
* @param requestBody The new viewing area to create
*
* @throws InvalidParametersError if the session token is not valid, or if the
* viewing area could not be created
*/
@Post('{townID}/viewingArea')
@Response<InvalidParametersError>(400, 'Invalid values specified')
public async createViewingArea(

@Path() townID: string,
@Header('X-Session-Token') sessionToken: string,
@Body() requestBody: ViewingArea,

)

Open API
Specification

Converting JavaScript Errors to HTTP Errors

• Under the hood, we use the popular
express web server for NodeJS

• Express uses an internal pipeline
architecture for processing requests

• We wrote this code snippet.

• It runs after the controller, inspects any
error that might be thrown, and returns an
HTTP error of 400, 422 or 500

• Example: if you say

a 400 error will be thrown.

• The @Response is only for documentation

//server.ts

app.use(
(
err: unknown, _req: Express.Request, res: Express.Response,
next: Express.NextFunction,

): Express.Response | void => {
if (err instanceof ValidateError) {

return res.status(422).json({
message: 'Validation Failed',
details: err?.fields,

});
}
if(err instanceof InvalidParametersError){
return res.status(400).json({
message: 'Invalid parameters',
details: err?.message

})
}
if (err instanceof Error) {
console.trace(err);
return res.status(500).json({
message: 'Internal Server Error',

});
}

return next();
},

)

throw new InvalidParametersError('Some message’)

https://expressjs.com/

Activity: Build the Transcript REST API

@Route('transcripts')
export class TranscriptsController extends
Controller {

@Get()
public getAll() {

return db.getAll();
}

Open API
Specification

Review: Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Recognize common software architectures
• Understand tradeoffs of scalability, performance, and fault tolerance

between these architectures
• Describe what makes web services RESTful, and implement a REST

API

	CS 4530 Software Engineering
	Learning Objectives for this Lesson
	Distributed Software Architectures
	Review: Distributed Systems Must Compromise
	Replicated Systems Must Compromise
	The Monolith Architecture Relies on a Single Server
	NFS is the Network File System
	NFS is a Monolithic Shared Filesystem
	Monolithic Architectures Struggle to Scale
	Replication Alone is Not The Answer
	Tiered Architectures Partition Responsibility
	Design Tiers Considering the Structure of Data
	GFS Tiers Filesystem Metadata and File Chunks
	Pipeline Architectures
	Pipeline Architectures
	Event-Driven Architectures
	Event Driven Architecture: Reliable Real-Time Chat
	Event Driven Architecture: Reliable Real-Time Chat
	Event Driven Architecture: Reliable Real-Time Chat
	Event-Driven Architecture Tradeoffs
	Microservice Architectures
	Microservices: Schematic Example
	Microservice Advantages and Disadvantages
	Microservices are (a) highly scalable and (b) trendy
	Microservices vs Monoliths
	How Do Components/Services Communicate?
	REST: Representational State Transfer
	REST Principles
	“Not cacheable” means that it must be executed exactly once per user request.
	Uniform Interface:�Nouns are represented as URIs
	Uniform Interface:�Verbs are represented as http methods
	You say you want parameters?
	Example interface #1: a todo-list manager
	Example Interface #2: a database of transcripts
	Specify REST APIs using OpenAPI
	TSOA Auto-Generates OpenAPI Specifications from TypeScript
	TSOA Auto-Generates OpenAPI Specifications from TypeScript
	Converting JavaScript Errors to HTTP Errors
	Activity: Build the Transcript REST API
	Review: Learning Objectives for this Lesson

